
Dynamical Equations in the

ARPS and COAMPS Coordinate System

Brian Fiedler

July 12, 2004

Abstract

This “treatise” derives the dynamical equations in the popular coor-
dinate transformations of non-hydrostatic numerical weather prediction
models. Tensor jargon is kept to a minimum.

1 Introduction

The coordinate transformations used in the non-hydrostatic models ARPS (U.
of Oklahoma) and COAMPS (U.S. Navy) are reviewed. The complete transfor-
mation involves two steps. The first step is a transformation to an orthogonal
coordinate system wrapped on a sphere, with equal scale factors in the horizon-
tal directions (a conformal coordinate system). The second is a transformation
of the conformal system to a non-orthogonal, terrain-following system.

Will we begin the journey in the (x, y, z) Cartesian coordinate system. After
a brief passage through cospherical coordinates (r, ψ, λ), we arrive at orthogonal,
conformal coordinates (X,Y, Z). From there, we distort the vertical coordinate
into a terrain-following coordinate in the (X,Y, ζ) system.

In order to keep the derivations uncluttered, no mention is made of rotating
coordinate systems. The Coriolis force that would result from such an analysis
is rather trivial to transform, since it involves no spatial derivatives. It is simpler
just to graft the well-known Coriolis force into the final equations.

2 Some basics

The position of a particle in an inertial Cartesian reference frame can be written
as:

~r = xi îi (1)

Some of you who have been well-schooled in the world of tensors and coordinate
transformations would welcome the use of superscripts on the coordinates, or
~r = xi îi. Such a convention can be useful for non-orthogonal systems. In the
latter part of this treatise we indeed consider non-orthogonal, terrain-following
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coordinate systems, but can do so quite effectively without using the high-
powered tensor notation. Here we will stay with subscripted indices.

What do we mean by an inertial Cartesian reference frame? The distance
between two points is given by:

(ds)2 = dxidxi, (2)

and the acceleration that is related to fundamental forces is calculated by:

d2~r

dt2
=
d2xi
dt2

îi. (3)

As you probably already know, non-Cartesian frames can be very beneficial
if, for example, one of the coordinate curves is aligned with a force, like gravity.
Hence the use of spherical coordinates in NWP, where the radial (or vertical)
direction is aligned with gravity.

In general coordinates qi(x1, x2, x3) the distance between two points is given
by:

(ds)2 = gijdqidqj (4)

where gij is the fundamental metric tensor. Coordinate systems are orthogonal
if gij = 0 for i 6= j.

Let the covariant base vectors be given by

ei ≡
∂~r

∂qi
(5)

or
ei ≡

∂xj
∂qi

îj . (6)

Now,

d~r · d~r =
∂~r

∂qi
dqi ·

∂~r

∂qj
dqj (7)

so the fundamental metric tensor is given by

gij = ei · ej . (8)

In an orthogonal coordinate system, only the three diagonal elements are nonzero
with:

h2
i ≡ gii (no sum!). (9)

The scale factors can be used to define unit base vectors:

êi = ei/hi (no sum!), (10)

which gives the property that:

êi · êj = δij . (11)
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3 Spherical Coordinates

Rather than use numerical subscripts for the coordinates, we can also use un-
subscripted variables. For example, the position vector can be written as:

~r = x̂ı + y̂ + zk̂. (12)

Spherical coordinates can be defined in terms of a radius r, a co-latitude ψ and
a longitude λ. These coordinates can be related to Cartesian coordinates (x,y,z)
by:

x = r cosλ sinψ
y = r sinλ sinψ (13)
z = r cosψ.

and

λ = arctan(x, y)

ψ = arctan(z,
√
x2 + y2) (14)

r =
√
x2 + y2 + z2.

The covariant base vectors are:

er = cosλ sinψı̂ + sinλ sinψ̂ + cosψk̂

eλ = −r sinλ sinψı̂ + r cosλ sinψ̂ (15)

eψ = r cosλ cosψı̂ + r sinλ cosψ̂− r sinψk̂.

It is easy to show that the spherical coordinates are orthogonal with er ·eλ = 0,
er · eψ = 0 and eλ · eψ = 0. The scale factors are also easily found: hr = 1,
hψ = r and hλ = r sinψ.

4 Lambert Conformal Coordinates

Consider coordinates (X,Y, Z) related to spherical coordinates by

λ = λ(X,Y )
ψ = ψ(X,Y ) (16)
r = Z + a,

where a is the radius of the Earth. How can we chose λ(X,Y ) and ψ(X,Y ) to
make an orthogonal coordinate system?

eX =
∂~r

∂X

=
∂~r

∂λ

∂λ

∂X
+
∂~r

∂ψ

∂ψ

∂X
+
∂~r

∂r

∂r

∂X
(17)

= eλ
∂λ

∂X
+ eψ

∂ψ

∂X
.
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Similarly,

eY = eλ
∂λ

∂Y
+ eψ

∂ψ

∂Y
(18)

and
eZ = er. (19)

The coordinates will be orthogonal if eX · eY = 0, or if

eλ · eλ
∂λ

∂X

∂λ

∂Y
+ eψ · eψ

∂ψ

∂X

∂ψ

∂Y
= 0 (20)

Here is a clever transformation that somebody (M. Lambert?) has come up
with. It’s related to making maps by projecting the surface of a sphere into a
cone, cutting the cone, and squashing it into a plane. We will experience the joy
of at least partially deriving the transformation. For the purpose of deriving the
transformation and the dynamical equations, we really don’t need to mention
the historical roots of this transformation in the map making process, meaning
the projecting and squashing of cones are not mentioned further.

Let
Q ≡

√
X2 + Y 2 (21)

and restrict our search for ψ and λ to

ψ(X,Y ) = ψ(Q) (22)

and
λ(X,Y ) =

1
n

arctan(−Y,X) + λ0. (23)

Thus the −Y axis goes down the longitude λ0. (Note: arctan(−Y,X) preserves
information about the quadrant in the calculation of arctan. It is the same as
arctan( X

−Y ) when both the numerator and denominator are positive.)
Our only task in this “derivation” is to find ψ(Q). Using (22) and (23) in

(20) we have

r2 sin2 ψ
∂λ

∂X

∂λ

∂Y
+ r2

∂ψ

∂X

∂ψ

∂Y
= 0 (24)

or

r2 sin2 ψ
∂λ

∂X

∂λ

∂Y
+ r2

∂Q

∂X

∂Q

∂Y

(
dψ

dQ

)2

= 0. (25)

Now with
∂

∂X
arctan(−Y,X) = − Y

X2 + Y 2
, (26)

∂

∂Y
arctan(−Y,X) =

X

X2 + Y 2
, (27)

∂Q

∂X
=

X√
X2 + Y 2

, (28)

and
∂Q

∂Y
=

Y√
X2 + Y 2

, (29)
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(25) becomes

− XY

n2(X2 + Y 2)2
sin2 ψ +

XY

X2 + Y 2

(
dψ

dQ

)2

= 0. (30)

This simplifies to
dψ

dQ
=

sinψ
nQ

, (31)

or
dψ

sinψ
=
dQ

nQ
. (32)

A solution is

ln tan
(
ψ

2

)
=

1
n

lnQ+ C (33)

or

ψ = 2arctan

[(
Q

b

) 1
n

]
(34)

where now b is the integration constant to be determined. We also will have use
for the inverse:

Q = b tann
(
ψ

2

)
. (35)

What are the best values to use for b and n? To answer this question, we
first find hX and hY . With h2

X = eX · eX and h2
Y = eY · eY we have from (17)

that:

h2
X = eλ · eλ

∂λ

∂X

∂λ

∂X
+ eψ · eψ

∂ψ

∂X

∂ψ

∂X

= r2 sin2 ψ

(
∂λ

∂X

)2

+ r2
(
dψ

dQ

∂Q

∂X

)2

= r2 sin2 ψ

(
Y

n(X2 + Y 2)

)2

+ r2 sin2 ψ

(
X

n(X2 + Y 2)

)2

=
(
r sinψ
nQ

)2

. (36)

Similarly for h2
Y . So we find from (17) and (18)

hX =
r sinψ
nQ

, (37)

hY =
r sinψ
nQ

. (38)

We will have use for the so-called map factor:

m ≡ 1
hX

=
1
hY

. (39)
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The map factor is the ratio of distance traveled in the coordinate system to the
physical distance traveled on the Earth’s surface. (The fact that the map factor
is isotropic in the horizontal earns this transformation the title of conformal.
When a map is plotted out on a piece of paper with a Cartesian representation
for X and Y, angles on the map will be the same as angles on the globe. For
NWP, this fact is probably of little consequence). Here we have found

m =
nb tann

(
ψ
2

)
r sinψ

(40)

It is sometimes useful to have m = 1 at a certain co-latitude ψt (the “true”
latitude) and at r = a where a is the radius of the Earth. Setting hX = 1 in
(37) and using (35) we have

b = a
sinψt

n tann (ψt/2)
(41)

What advantage is there to having m ≈ 1 in the area of interest? Certainly if
you forget to include m in one of your equations or subroutines, your error will
be reduced!

What value should we use for n? It is often advantageous to have m nearly
uniform across an area of interest. We may want to have m assume an extreme
value at a certain colatitude ψm. We solve for ψ = ψm in

∂m

∂ψ
=
nb

r

∂

∂ψ

tann
(
ψ
2

)
sinψ

= 0 (42)

Using Mathematica I found that

∂

∂ψ

tann
(
ψ
2

)
sinψ

= (n− cos(ψ)) csc2(ψ) tann(
ψ

2
) (43)

Thus to have ∂m
∂ψ = 0 at ψm we use n = cosψm. A special case of particular

interest and simplicity is ψm = 0 or n = 1. This gives a polar stereographic
projection. The Lambert conformal coordinate system may also be configured
by specifying two colatitudes, ψ1 and ψ2, where m = 1. From (40), merely
setting m equal at the two latitudes allows a solution for n in:

tann(ψ1/2)
sin(ψ1)

=
tann(ψ2/2)

sin(ψ2)
. (44)

Let

α ≡ sin(ψ1)
sin(ψ2)

. (45)

and

β ≡ tan(ψ1/2)
tan(ψ2/2)

. (46)
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Lambert, ψt = ψm = .8 Polar stereographic, ψt = ψm = 0

Figure 1: Some conformal grids on a sphere.
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Polar stereographic, ψt = ψm = 0:

Figure 2: Map factors as a function of colatitude ψ for the grids in Fig. 1.
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The solution for n is

n =
ln(α)
ln(β)

. (47)

The solution for b can be obtained from (40) by setting m = 1 and using the
solution for n, as in (41) (with ψt replaced by ψ1 or ψ2).

5 The dynamical equations with map factors

The following formulas are useful for expressing the dynamical creatures in our
forecast equations in terms of orthogonal curvilinear coordinates. The “proofs”
I offer are mainly “advertisements” inviting you to “invest” in the formulas.

With
d~r = h1dq1ê1 + h2dq2ê2 + h3dq3ê3, (48)

and with the desire for ∇A to have the property that

dA = ∇A · d~r, (49)

then surely we must have

∇A =
1
h1

∂A

∂q1
ê1 +

1
h2

∂A

∂q2
ê2 +

1
h3

∂A

∂q3
ê3. (50)

Now ∇ · ~A has the property that it can be used in Gauss’s theorem:∫
V

∇ · ~AdV =
∫
S

~A · n̂dS (51)

Therefore,

∇ · ~A = lim
V→0

1
V

∫
S

~A · n̂dS (52)

Thus ∇· ~A can be derived by considering a little cuboid of the coordinate system.
What is a “cuboid”? Actually, I just made up the word. For a very small
cuboid, the volume is V = h1h2h3dq1dq2dq3. Also, in a surface integral over a
very small cuboid, ~A · n̂ can be assumed to be constant in a face of the cuboid.
A consideration of the surface integral over a cuboid gives:

∇ · ~A =
1

h1h2h3

(
∂h2h3A1

∂q1
+
∂h1h3A2

∂q2
+
∂h1h2A3

∂q3

)
(53)

Now ∇× ~A has the property that it can be used in Stokes’s theorem:∫
S

∇× ~A · n̂dS =
∮

~A · d~r (54)

Therefore,

∇× ~A · n̂ = lim
S→0

1
S

∮
~A · d~r (55)
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By examining Stokes’s theorem on the faces of very small cuboids we have:

∇× ~A =
1

h2h3

(
∂h3A3

∂q2
− ∂h2A2

∂q3

)
ê1+

1
h1h3

(
∂h1A1

∂q3
− ∂h3A3

∂q1

)
ê2+

1
h1h2

(
∂h2A2

∂q1
− ∂h1A1

∂q2

)
ê3

(56)
In transforming the equations to a non-Cartesian coordinate system, the term
~U · ∇~U can be quite troublesome. Using the above identities, we can derive the
orthogonal curvilinear form for ~U · ∇~U using

~U · ∇~U = −~U ×
(
∇× ~U

)
+∇

~U · ~U
2

(57)

The chore of this calculation is greatly relieved by the use of Mathematica or
some other computer-based symbolic math processor. The result is:

~U · ∇~U =
∑
i

∑
j

Uj
hj

(
∂Ui
∂xj

+
Ui
hi

∂hi
∂xj

− Uj
hi

∂hj
∂xi

)
êi. (58)

With ~U = (U, V,W ) in the (X,Y,Z) system, and with hZ = 1, we have

~U · ∇~U = (
U

hX

∂U

∂X
+

V

hY

∂U

∂Y
+W

∂U

∂Z
+

UV

hXhY

∂hX
∂Y

− V 2

hY hX

∂hY
∂X

+
UW

hX

∂hX
∂Z

)
êX

+
(
U

hX

∂V

∂X
+

V

hY

∂V

∂Y
+W

∂V

∂Z
+

UV

hXhY

∂hY
∂X

− U2

hY hX

∂hX
∂Y

+
VW

hY

∂hY
∂Z

)
êY

+
(
U

hX

∂W

∂X
+

V

hY

∂W

∂Y
+W

∂W

∂Z
− U2

hX

∂hX
∂Z

− V 2

hY

∂hY
∂Z

)
êZ . (59)

Now with hX = 1
m , hY = 1

m , neglecting curvature terms with W , and neglecting
the curvature terms in the vertical direction:

~U · ∇~U = (
mU

∂U

∂X
+mV

∂U

∂Y
+W

∂U

∂Z
− UV ∂m

∂Y
+ V 2 ∂m

∂X

)
êX

+
(
mU

∂V

∂X
+mV

∂V

∂Y
+W

∂V

∂Z
+ U2 ∂m

∂Y
− UV ∂m

∂X

)
êY

+
(
mU

∂W

∂X
+mV

∂W

∂Y
+W

∂W

∂Z

)
êZ . (60)

One advantage to using ∂m
∂X ≈ 0 is that if you forget to put the curvature terms

in your equations of motion, the error will be small! The other advantage is
that, with m nearly uniform across the domain, a grid uniform in ∆X will be
uniform in physical space also.

A “bare-bones” system of equations – with a pressure gradient force, Coriolis
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force, and gravity – is given by:

∂U

∂t
+mU

∂U

∂X
+mV

∂U

∂Y
+W

∂U

∂Z
− UV ∂m

∂Y
+ V 2 ∂m

∂X
+
m

ρ

∂p

∂x
− fV = 0

∂V

∂t
+mU

∂V

∂X
+mV

∂V

∂Y
+W

∂V

∂Z
+ U2 ∂m

∂Y
− UV ∂m

∂X
+
m

ρ

∂p

∂y
+ fU = 0

∂W

∂t
+mU

∂W

∂X
+mV

∂W

∂Y
+W

∂W

∂Z
+

1
ρ

∂p

∂Z
− g = 0 (61)

The fifth and sixth terms of in the first two equations of (61) are neglected in
COAMPS. COAMPS is usually run with ∂m

∂Y = 0 and ∂m
∂X = 0 near the center of

the domain, and presumably the terms also stay negligible throughout a small
domain. Another way of stating why this is so, is that the coordinate lines are
nearly great circles for small domains. For larger domains (see the example in
Figure 1), there could be problems away from the center of the domain.

If mass is conserved in a model then we have:

∂ρ

∂t
+∇ · (ρ~U) = 0 (62)

and we can write:

ρ
∂U

∂t
+ ρ~U · ∇U =

∂ρU

∂t
+∇ · (ρ~UU) (63)

Using (53) with the map factors we have:

∇ · (ρ~UU) = m2 ∂

∂X

ρUU

m
+m2 ∂

∂Y

ρV U

m
+

∂

∂Z
(ρWU). (64)

Some Canadian NWP models have made use of the following form of the
equations. With:

(U, V,W ) ≡
(
mŨ,mṼ ,W

)
, (65)

the bare bones system (61) becomes

∂Ũ

∂t
+m2Ũ

∂Ũ

∂X
+m2Ṽ

∂Ũ

∂Y
+W

∂Ũ

∂Z
+
Ũ2 + Ṽ 2

2
∂m2

∂X
+

1
ρ

∂p

∂x
− fṼ = 0

∂Ũ

∂t
+m2Ũ

∂Ṽ

∂X
+m2Ṽ

∂Ṽ

∂Y
+W

∂Ṽ

∂Z
+
Ũ2 + Ṽ 2

2
∂m2

∂Y
+

1
ρ

∂p

∂y
+ fŨ = 0

∂W

∂t
+m2Ũ

∂W

∂X
+m2Ṽ

∂W

∂Y
+W

∂W

∂Z
+

1
ρ

∂p

∂Z
− g = 0. (66)

5.1 A question I have

The Lambert conformal transformation is more complicated than the polar
stereographic projection and has strange pathalogies near the pole. Why not
just tilt a polar stereographic projection so that it’s pole is over ψ0 and λ0? I
don’t know why that’s not done in NWP. . .
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6 Terrain-following coordinates

Figure 3: Vertical slice of a terrain-following coordinate system.

In numerical weather prediction, we store the values of variables on a grid, with
the lowest grid point at the Earth’s surface. The construction of the numerical
model is simplified if a vertical coordinate ζ(X,Y, Z) is constructed that has a
constant value of ζ at the surface (usually ζ = 0). Above the Earth’s surface, the
surfaces of constant ζ will tend be displaced upwards by the terrain underneath.
In conformal coordinates, the gradient of a scalar A is given by:

∇A = m

(
∂A

∂X

)
Y,Z

êX+m
(
∂A

∂Y

)
X,Z

êY +
(
∂A

∂Z

)
X,Y

êZ . (67)

The subscripts on the partial derivatives indicate which coordinates are being
held constant. It would be cumbersome to make a numerical approximation to
a derivative such as

(
∂A
∂X

)
Y,Z

, because neighboring values of A are not available
on a constant level of Z. So we prefer to find forms for ∇A that use partial
derivatives with ζ held constant, rather than Z.

We do not have to revisit the troublesome curvature terms associated with
~U ·∇~U because we will leave the component directions for ~U as they were in the
conformal coordinate system. Both U and V will remain exactly the horizontal
components, not the terrain following components. Thus, in transforming the
acceleration term ~U ·∇~U to the terrain-following coordinate system, we will only
deal with terms like ~U · ∇U with U treated as a scalar. Likewise, we leave the
unit vectors in the gradient to be those of the conformal system. We are only
making a “partial” conversion to the terrain-following system (pun intended!).
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6.1 Converting partial derivatives to the terrain-following
system

In order to convert creatures like ~U · ∇A to the terrain-following system, we
return to the definition of the differential:

dA =
(
∂A

∂X

)
Y,Z

dX +
(
∂A

∂Y

)
X,Z

dY +
(
∂A

∂Z

)
X,Y

dZ. (68)

If we hold Y constant and move on a constant ζ surface:

dA =
(
∂A

∂X

)
Y,Z

dX +
(
∂A

∂Z

)
X,Y

(
∂Z

∂X

)
Y,ζ

dX, (69)

which can be arranged as:(
∂A

∂X

)
Y,ζ

=
(
∂A

∂X

)
Y,Z

+
(
∂A

∂Z

)
X,Y

(
∂Z

∂X

)
Y,ζ

. (70)

We do the same with holding X constant and moving on a constant ζ surface:

dA =
(
∂A

∂Y

)
X,Z

dX +
(
∂A

∂Z

)
X,Y

(
∂Z

∂Y

)
Y,ζ

dY, (71)

yielding: (
∂A

∂Y

)
X,ζ

=
(
∂A

∂Y

)
X,Z

+
(
∂A

∂Z

)
X,Y

(
∂Z

∂Y

)
X,ζ

. (72)

Derivatives in the vertical direction convert as:

dA =
(
∂A

∂Z

)
X,Y

(
∂Z

∂ζ

)
X,Y

dζ (73)

or (
∂A

∂ζ

)
X,Y

=
(
∂A

∂Z

)
X,Y

(
∂Z

∂ζ

)
X,Y

. (74)

So (67 ) converts to the terrain-following system as:

∇A =

[(
m
∂A

∂X

)
Y,ζ

−
(
∂A

∂Z

)
X,Y

(
m
∂Z

∂X

)
Y,ζ

]
êX

+

[(
m
∂A

∂Y

)
X,ζ

−
(
∂A

∂Z

)
X,Y

(
m
∂Z

∂Y

)
Y,ζ

]
êY +

(
∂A

∂Z

)
X,Y

êZ .(75)

We can make this a bit neater by noticing that all partial derivatives are within
the terrain-following coordinates, meaning ζ is held constant, rather than Z.
From here on, we will drop the explicit designation of which coordinates are
being held constant when all the derivatives are in the terrain-following coordi-
nates, so

∇A =
(
m
∂A

∂X
− ∂A

∂Z
m
∂Z

∂X

)
êX +

(
m
∂A

∂Y
− ∂A

∂Z
m
∂Z

∂Y

)
êY +

∂A

∂Z
êZ . (76)
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6.2 ~U · ∇A in the terrain-following system

Recall that in the conformal system:

~U · ∇A = Um

(
∂A

∂X

)
Y,Z

+ V m

(
∂A

∂Y

)
X,Z

+W

(
∂A

∂Z

)
X,Y

. (77)

Using (76), we have in the terrain-following system:

~U · ∇A = Um

[
∂A

∂X
− ∂A

∂Z

∂Z

∂X

]
+ V m

[
∂A

∂Y
− ∂A

∂Z

∂Z

∂Y

]
+W

∂A

∂Z
(78)

or

~U · ∇A = Um
∂A

∂X
+ V m

∂A

∂Y
+

(
−Um∂Z

∂X
− V m∂Z

∂Y
+W

)
∂A

∂Z
. (79)

We define a new vertical velocity (a contravariant vertical velocity, in tensor
jargon):

W ≡
−Um ∂Z

∂X − V m
∂Z
∂Y +W

∂Z
∂ζ

, (80)

which leaves the advection of A rather neat:

~U · ∇A = Um
∂A

∂X
+ V m

∂A

∂Y
+W ∂A

∂ζ
. (81)

6.3 A “conservative” form for ∇A

If we multiply (76) by ∂ζ
∂Z

∂Z
∂ζ , we obtain another useful form of ∇A :

∇A =
∂ζ

∂Z

{[
∂Z

∂ζ
m
∂A

∂X
− ∂A

∂ζ
m
∂Z

∂X

]
êX +

[
∂Z

∂ζ
m
∂A

∂Y
− ∂A

∂ζ
m
∂Z

∂Y

]
êY +

∂A

∂ζ
êZ

}
(82)

or

∇A =
∂ζ

∂Z

{[
m

∂

∂X

(
A
∂Z

∂ζ

)
− ∂

∂ζ

(
Am

∂Z

∂X

)]
êX +

[
m

∂

∂Y

(
A
∂Z

∂ζ

)
− ∂

∂ζ

(
Am

∂Z

∂Y

)]
êY +

∂A

∂ζ
êZ

}
.

(83)
This last form is close to what is called the conservative form of ∇A. Its use in
finite-difference models, rather than (76), allows for closer satisfaction of∫

∇AdV =
∫
An̂dS (84)

even when numerical approximations are used for the derivatives. It is generally
thought to be better to use (83) for the pressure gradient, rather than (76). But
(83) is not exactly the conservative form because (67) was not a conservative
form.
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6.4 The divergence ∇ · ~F

Recall that in the conformal coordinate system,

∇ · ~F = m2

(
∂

∂X

FX
m

)
Y,Z

+m2

(
∂

∂Y

FY
m

)
X,Z

+
(
∂

∂Z
FZ

)
X,Y

. (85)

Using steps very similar to the derivation of (83), we find:

∇·~F =
∂ζ

∂Z

{
m2 ∂

∂X

(
FX
m

∂Z

∂ζ

)
− ∂

∂ζ

(
FXm

∂Z

∂X

)
+m2 ∂

∂Y

(
FY
m

∂Z

∂ζ

)
− ∂

∂ζ

(
FYm

∂Z

∂Y

)
+
∂FZ
∂ζ

}
.

(86)
The above is a conservative form and can be arranged as:

∇·~F =
∂ζ

∂Z

{
m2 ∂

∂X

(
FX
m

∂Z

∂ζ

)
+m2 ∂

∂Y

(
FY
m

∂Z

∂ζ

)
+

∂

∂ζ

(
FZ − FXm

∂Z

∂X
− FYm

∂Z

∂Y

)}
.

(87)
Let σ be a density of some sort. When ~F is the advective flux of σA, or :

~F = σ~UA, (88)

we again find use for W as defined in (80 ):

∇·
(
σ~UA

)
=
∂ζ

∂Z

[
m2 ∂

∂X

(
∂Z

∂ζ

σUA

m

)
+m2 ∂

∂Y

(
∂Z

∂ζ

σV A

m

)
+

∂

∂ζ

(
∂Z

∂ζ
σWA

)]
.

(89)

7 Equations like ∂A
∂t + ~U · ∇A = SA

In NWP, we certainly see a lot of forms like

∂A

∂t
+ ~U · ∇A = SA, (90)

where SA is a general souce term for A. If we retain the advective form of this
equation, then, in terrain-following coordinates, it can be written as:

∂A

∂t
+ Um

∂A

∂X
+ V m

∂A

∂Y
+W ∂A

∂ζ
= SA, (91)

where we have used (81). We can also convert the advective form to flux form,
if we have an equation like:

∂σ

∂t
= ∇ ·

(
σ~U

)
. (92)

Commonly, we might expect σ = ρ, where ρ is the familiar mass density. But
we need not make an assumption about what σ is; (90) becomes:

∂

∂t
(σA) +∇ ·

(
σ~UA

)
= σSA, (93)
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or, using (89),

∂

∂t
(σA)+

∂ζ

∂Z

[
m2 ∂

∂X

(
∂Z

∂ζ

σUA

m

)
+m2 ∂

∂Y

(
∂Z

∂ζ

σV A

m

)
+

∂

∂ζ

(
∂Z

∂ζ
σWA

)]
= σSA.

(94)
We define:

σ∗ ≡ ∂Z

∂ζ

σ

m
. (95)

Now with m and ∂Z
∂ζ independent of t, and with m independent of ζ, and can

write (94) as

∂

∂t
(σ∗A) +m

∂

∂X
(σ∗UA) +m

∂

∂Y
(σ∗V A) +

∂

∂ζ
(σ∗WA) = σ∗SA. (96)

The pressure equation in ARPS and COAMPS nearly enforces ∇ ·
(
σ~U

)
= 0

with σ = ρθ , except for the effect of transient sound waves. Here θ is potential
temperature and the overbar indicates a time-invariant state. In that case,
∂σ∗

∂t = 0, and (93 ) could have been written:

σ∗
∂

∂t
A+m

∂

∂X
(σ∗UA) +m

∂

∂Y
(σ∗V A) +

∂

∂ζ
(σ∗WA) = σ∗SA (97)

as a very usable approximation.
It seem to have been once believed, in the construction of ARPS, that ARPS

would enforce ∇ ·
(
σ~U

)
= 0 with σ = ρ, rather than σ = ρθ. Latter versions of

ARPS seem to have discovered that (97) needed some improvement with σ = ρ.
In ARPS we find the flux form written with additional terms on the right hand
side:

σ∗
∂

∂t
A+m

∂

∂X
(σ∗UA)+m

∂

∂Y
(σ∗V A)+

∂

∂ζ
(σ∗WA) = σ∗SA.+Am

∂

∂X
(σ∗U)+m

∂

∂Y
(σ∗V )+

∂

∂ζ
(σ∗W)

(98)
This form follows from

σ~U · ∇A = ∇ ·Aσ~U −A∇ · σ~U, (99)

without any assumption about ∇ ·
(
σ~U

)
= 0. However, the additional terms

on the right-hand side of (98) prevent some of the benefits of working with a
flux-form equation.

7.1 extension to a moving vertical coordinate

It is possible to construct models with variables represented on grid points,
of constant ζ, that move up or down in the vertical direction. This may be
desirable in order to better resolve layer clouds, boundary layers tops, etc. In
other words, we consider Z = Z (ζ,X, Y, t) . Assume a grid point is moving with
a vertical velocity Wg. We write the time rate of change on the gridpoint as:
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∂A

∂τ
=
∂A

∂t
+Wg

∂ζ

∂Z

∂A

∂ζ
. (100)

Note that τ = t, but ∂A
∂τ 6=

∂A
∂t . A derivative with respect to τ indicates ζ is held

consant; a derivative with respect to t indicates Z is held consant. Now with

Wg ≡
−Um ∂Z

∂X − V m
∂Z
∂Y +W −Wg

∂Z
∂ζ

, (101)

equation (91) can be written:

∂A

∂τ
+ Um

∂A

∂X
+ V m

∂A

∂Y
+Wg

∂A

∂ζ
= SA. (102)

Using (100) in (94), we have

∂

∂τ
(σA)−Wg

∂ζ

∂Z

∂

∂ζ
(σA)+

∂ζ

∂Z

[
m2 ∂

∂X

(
∂Z

∂ζ

σUA

m

)
+m2 ∂

∂Y

(
∂Z

∂ζ

σV A

m

)
+

∂

∂ζ

(
∂Z

∂ζ
σWA

)]
= σSA

(103)
or

1
m

∂Z

∂ζ

∂

∂τ
(σA)−Wg

1
m

∂

∂ζ
(σA)+m

∂

∂X
(σ∗UA)+m

∂

∂Y
(σ∗V A)+

∂

∂ζ
(σ∗WA) = σSA.

(104)
Now with ∂Z

∂τ ≡Wg , we have

1
m

∂Z

∂ζ

∂

∂τ
(σA)−Wg

1
m

∂

∂ζ
(σA) =

∂

∂τ

(
1
m

∂Z

∂ζ
σA

)
− σA 1

m

∂Wg

∂ζ
−Wg

1
m

∂

∂ζ
(σA)(105)

=
∂

∂τ
(σ∗A)− ∂

∂ζ

(
σ∗

∂ζ

∂Z
Wg

)
.

Again we find use for Wg in the “neatest” flux form:

∂

∂τ
(σ∗A) +m

∂

∂X
(σ∗UA) +m

∂

∂Y
(σ∗V A) +

∂

∂ζ
(σ∗WgA) = σ∗SA. (106)

But, in order to conform to the programming style of ARPS, we would probably
work with the form:

σ∗
∂A

∂τ
+m

∂

∂X
(σ∗UA)+m

∂

∂Y
(σ∗V A)+

∂

∂ζ
(σ∗WgA) = σ∗SA−A

∂σ∗

∂τ
. (107)
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For the case ∂σ
∂t = 0, we have:

∂σ∗

∂τ
=

1
m
σ
∂

∂τ

∂Z

∂ζ
+

1
m

∂Z

∂ζ
Wg

∂ζ

∂Z

∂σ

∂ζ
(108)

=
1
m
σ
∂Wg

∂ζ
+

1
m
Wg

∂σ

∂ζ

=
∂

∂ζ

( σ
m
Wg

)
=

∂

∂ζ

(
σ∗

∂ζ

∂Z
Wg

)
.

So, when ∇·
(
σ~U

)
= 0 is a good approximation, an acceptable flux form follows

from using (108) in (107):

σ∗
∂A

∂τ
+m

∂

∂X
(σ∗UA)+m

∂

∂Y
(σ∗V A)+

∂

∂ζ
(σ∗WgA) = σ∗SA−A

∂

∂ζ

(
σ∗

∂ζ

∂Z
Wg

)
(109)

If we are working with the (98), appropriate for ∇ ·
(
σ~U

)
6= 0, we use

σ∗
∂

∂t
A = σ∗

∂

∂τ
A− σ∗Wg

∂ζ

∂Z

∂A

∂ζ
(110)

= σ∗
∂

∂τ
A− ∂

∂ζ

(
σ∗Wg

∂ζ

∂Z
A

)
+A

∂

∂ζ

(
σ∗Wg

∂ζ

∂Z

)
Now the “extra terms” that have been coded in the fixed-grid version of ARPS
can be put to good use. The moving grid form of (98) is:

σ∗
∂A

∂τ
+m

∂

∂X
(σ∗UA)+m

∂

∂Y
(σ∗V A)+

∂

∂ζ
(σ∗WgA) = σ∗SA+A

[
m

∂

∂X
(σ∗U) +m

∂

∂Y
(σ∗V ) +

∂

∂ζ
(σ∗Wg)

]
(111)

The finite-difference implementation of either (111) or (102) requires very little
new code beyond that of the fixed-grid counterparts, (98) or (91), other than
W →Wg.
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